Mouse Noggin / NOG Protein (Fc Tag)

Catalog Number: 50688-M02H

General Information

Gene Name Synonym:

NOG

Protein Construction:

A DNA sequence encoding the mouse NOG (P97466) (Met1-Cys232) was fused with the Fc region of human IgG1 at the C-terminus.

Source: Mouse

Expression Host: HEK293 Cells

QC Testing

Purity: > 85 % as determined by SDS-PAGE

Bio Activity:

Measured by its ability to inhibit BMP4-induced alkaline phosphatase production by MC3T3-E1 cells. The ED50 for this effect is typically 0.1-0.6 μg/mL.

Endotoxin:

< 1.0 EU per μg of the protein as determined by the LAL method

Stability:

Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Gln 28

Molecular Mass:

The recombinant mouse NOG/Fc comprises 454 amino acids and has a predicted molecular mass of 51 kDa.

Formulation:

Lyophilized from sterile 50 mM Tris, 100 mM Glycine, 10 mM NaCl, pH 7.5.

Normally 5% - 8% trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:

Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:

Detailed reconstitution instructions are sent along with the products.

Protein Description

Noggin is a secreted protein involved at multiple stages of vertebrate embryonic development including neural induction and is known to exert its effects by inhibiting the bone morphogenetic protein (BMP)-signaling pathway. It binds several BMPs with very high (picomolar) affinities, with a marked preference for BMP2 and BMP4 over BMP7. By binding tightly to BMPs, Noggin prevents BMPs from binding their receptors. Noggin binds the bone morphogenetic proteins (BMP) such as BMP-4 and BMP-7, and inhibits BMP signaling by blocking the molecular interfaces of the binding epitopes for both type I and type II receptors. Interaction of BMP and its antagonist Noggin governs various developmental and cellular processes, including embryonic dorsal-ventral axis, induction of neural tissue, formation of joints in the skeletal system and neurogenesis in the adult brain. Noggin plays a key role in neural induction by inhibiting BMP4, along with other TGF-β signaling inhibitors such as chordin and follistatin. Mouse knockout experiments have demonstrated that noggin also plays a crucial role in bone development, joint formation, and neural tube fusion.