Human CD200 / OX-2 Protein (His & Fc Tag)

Catalog Number: 10886-H03H

General Information
Gene Name Synonym:
MOX1; MOX2; MRC; OX-2; OX2

Protein Construction:
A DNA sequence encoding the human CD200 (NP_005835.4) extracellular domain (Met 1-Gly 232) was fused with the C-terminal polyhistidine-tagged Fc region of human IgG1 at the C-terminus.

Source: Human
Expression Host: HEK293 Cells

QC Testing
Purity: > 95 % as determined by SDS-PAGE

Bio Activity:
Measured by its binding ability in a functional ELISA. The immobilized human CD200R1 at 1 µg/ml (100 µl/well) can bind human CD200 Fc Chimera with a linear range of 0.12-16 ng/ml.

Endotoxin:
< 1.0 EU per µg of the protein as determined by the LAL method

Stability:
Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Gin 31

Molecular Mass:
The recombinant human CD200/Fc is a disulfidelinked homodimer. The reduced monomer consists of 450 amino acids and has a predicted molecular mass of 50.5 kDa. As a result of glycosylation, the apparent molecular mass of rh CD200/Fc monomer is approximately 65-70 kDa in SDS-PAGE under reducing conditions.

Formulation:
Lyophilized from sterile PBS, pH 7.4

Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any special or concerns requirements.

Usage Guide
Storage:
Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:
Detailed reconstitution instructions are sent along with the products.

SDS-PAGE:

Protein Description
CD2 (OX-2) is a cell surface glycoprotein that imparts immune privileges by suppressing alloimmune and autoimmune responses through its receptor, CD2R, expressed primarily on myeloid cells. Signals delivered through the CD2:CD2R axis have been shown to play an important role in the regulation of anti-tumor immunity, and overexpression of CD2 has been reported in a number of malignancies, including CLL, as well as on cancer stem cells. The role of CD2-CD2R signaling in immune regulation of the central nervous system has become a popular field of research in recent years. Many studies have shown that there is a close correlation between CD2-CD2R, microglia activation, and Parkinson's disease (PD). The ability of CD2 to suppress myeloid cell activation is critical for maintaining normal tissue homeostasis but may also enhance the survival of migratory neoplastic cells. CD2 and CD2R associate via their respective N-terminal Ig-like domains. CD2 has been characterized as an important immunoregulatory molecule, increased expression of which can lead to decreased transplant rejection, autoimmunity, and allergic disease. Elevated CD2 expression has been reported to be associated with poor prognosis in a number of human malignancies. In addition, CD2 also plays an important role in prevention of graft rejection, autoimmune diseases and spontaneous abortion.

References