Human CD30 / TNFRSF8 Protein (His & Fc Tag)

Catalog Number: 10777-H03H

General Information

Gene Name Synonym:
CD30; D1S166E; Ki-1

Protein Construction:
A DNA sequence encoding the human TNFRSF8 (NP_001234.2) extracellular domain (Met 1-Lys 379) was fused with the C-terminal polyhistidine-tagged Fc region of human IgG1 at the C-terminus.

Source: Human

Expression Host: HEK293 Cells

QC Testing

Purity: > 90 % as determined by SDS-PAGE

Bio Activity:
Measured by its binding ability in a functional ELISA.

Endotoxin:
< 1.0 EU per μg of the protein as determined by the LAL method

Stability:
Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Phe 19

Molecular Mass:
The recombinant human TNFRSF8/Fc is a disulfide-linked homodimer after removal of the signal peptide. The reduced monomer consists of 609 amino acids and has a predicted molecular mass of 66.5 kDa. In SDS-PAGE under reducing conditions, the apparent molecular mass of rhTNFRSF8/Fc monomer is approximately 130 kDa due to glycosylation.

Formulation:
Lyophilized from sterile PBS, pH 7.4

Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:
Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:
Detailed reconstitution instructions are sent along with the products.

SDS-PAGE:

Protein Description

CD3, also known as TNFRSF8, is a cell membrane protein of the tumor necrosis factor receptor (TNFR) superfamily. CD3 protein is expressed by activated, but not resting, T and B cells. CD3 can regulate proliferation of lymphocytes and may also play an important role in human immunodeficiency virus replication. As a regulator of apoptosis, CD3 protein induces cell death or proliferation, depending on the cell type, and has been shown to limit the proliferative potential of autoreactive CD8 effector T cells and protect the body against autoimmunity. CD3 protein expression is upregulated in various hematological malignancies, including Reed-Sternberg cells in Hodgkin's disease (HD), anaplastic large cell lymphoma (ALCL) and subsets of Non-Hodgkin's lymphomas (NHLs), and CD3 is also linked to leukocytes in patients with chronic inflammatory diseases, including lupus erythematosus, asthma, rheumatoid arthritis and atopic dermatitis (AD).

References