Cynomolgus / Rhesus c-MET / HGFR Protein (His Tag)

Catalog Number: 90304-C08H

General Information

Gene Name Synonym:
MET

Protein Construction:
A DNA sequence encoding the cynomolgus/rhesus MET (NP_001162100.1) (Met1-Thr932) was expressed with a polyhistidine tag at the C-terminus. Cynomolgus and Rhesus MET sequences are identical.

Source: Cynomolgus

Expression Host: HEK293 Cells

QC Testing

Purity: (4.6+58.2+34.7) % as determined by SDS-PAGE

Bio Activity:
Immobilized Cynomolgus MET-His at 10 μg/ml (100 μl/well) can bind biotinylated Cynomolgus HGF (cat:90286-CNAH). The EC_{50} of biotinylated Cynomolgus HGF (cat:90286-CNAH) is 0.11-0.27 μg/ml.

Endotoxin:
< 1.0 EU per μg of the protein as determined by the LAL method

Stability:
Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Glu 25

Molecular Mass:
The recombinant cynomolgus/rhesus MET comprises 919 amino acids and has a calculated molecular mass of 103.1 KDa. The apparent molecular mass of it is approximately 128.2, 77.6 and 45.7 KDa in SDS-PAGE under reducing conditions.

Formulation:
Lyophilized from sterile PBS, pH 7.4.

Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:
Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:
Detailed reconstitution instructions are sent along with the products.

Protein Description

Hepatocyte growth factor receptor (HGFR), also known as c-Met or mesenchymal-epithelial transition factor (MET), is a receptor tyrosine kinase (RTK) that has been shown to be overexpressed and/or mutated in a variety of malignancies. HGFR protein is produced as a single-chain precursor, and HGF is the only known ligand. Normal HGF/HGFR signaling is essential for embryonic development, tissue repair or wound healing, whereas aberrantly active HGFR has been strongly implicated in tumorigenesis, particularly in the development of invasive and metastatic phenotypes. HGFR protein is a multifaceted regulator of growth, motility, and invasion, and is normally expressed by cells of epithelial origin. Preclinical studies suggest that targeting aberrant HGFR signaling could be an attractive therapy in cancer.

References