Rhesus CSF1R / MCSF Receptor / CD115 (C378R)Protein (Fc Tag)

Catalog Number: 90035-C02H

General Information

Gene Name Synonym:
CSF1R

Protein Construction:
A DNA sequence encoding the cynomolgus CSF1R (XP_001107711.3) (Met1-Glu512, with mutation Cys 378 Arg) was expressed with the Fc region of human IgG1 at the C-terminus.

Source: Rhesus

Expression Host: HEK293 Cells

QC Testing

Purity: > 95 % as determined by SDS-PAGE.

Endotoxin:
< 1.0 EU per μg protein as determined by the LAL method.

Stability:
Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Ile 20

Molecular Mass:
The recombinant rhesus CSF1R consists of 731 amino acids and predicts a molecular mass of 81.3 kDa.

Formulation:
Lyophilized from sterile PBS, pH 7.4.

Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:
Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:
Detailed reconstitution instructions are sent along with the products.

M-CSFR encoded by the proto-oncogene c-fms is the receptor for colony stimulating factor 1 (CSF1R), a cytokine involved in the proliferation, differentiation, and activation of macrophages. This cell surface glycoprotein is consisted by an extracellular ligand-binding domain, a single membrane-spanning segment, and an intracellular tyrosine kinase domain. Binding of CSF1 activates the receptor kinase, leading to "autophosphorylation" of receptor subunits and the concomitant phosphorylation of a series of cellular proteins on tyrosine residues. CSF1R is a tyrosine kinase receptor that is absolutely required for macrophage differentiation and thus occupies a central role in hematopoiesis. CSF1 and its receptor (CSF1R, product of c-fms proto-oncogene) were initially implicated as essential for normal monocyte development as well as for trophoblastic implantation. This apparent role for CSF1/CSF1R in normal mammary gland development is very intriguing because this receptor/ligand pair has also been found to be important in the biology of breast cancer in which abnormal expression of CSF1 and its receptor correlates with tumor cell invasiveness and adverse clinical prognosis. Tumor cell expression of CSF1R is under the control of several steroid hormones (glucocorticoids and progestins) and the binding of several bHLH transcription factors, while tumor cell expression of CSF-1 appears to be regulated by other hormones, some of which are involved in normal lactogenic differentiation. However, studies have demonstrated that CSF1 and CSF1R have additional roles in mammary gland development during pregnancy and lactation. The role of CSF1 and CSF1R in normal and neoplastic mammary development that may elucidate potential relationships of growth factor-induced biological changes in the breast during pregnancy and tumor progression.

References