Rat VE-Cadherin / CD144 / CDH5 Protein (His Tag)

Catalog Number: 80276-R08H

General Information

Gene Name Synonym:

CDH5

Protein Construction:

A DNA sequence encoding the rat CDH5 (NP_001100877.1) (Met1-Gln585) was expressed with a polyhistidine tag at the C-terminus.

Source: Rat

Expression Host: HEK293 Cells

QC Testing

Purity: > 70% as determined by SDS-PAGE

Endotoxin:

< 1.0 EU per μg of the protein as determined by the LAL method

Stability:

Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Gly 25

Molecular Mass:

The recombinant rat CDH5 comprises 572 amino acids and predicts a molecular mass of 65.1 kDa. The apparent molecular mass of the recombinant protein is approximately 91 kDa in SDS-PAGE under reducing conditions due to glycosylation.

Formulation:

Lyophilized from sterile PBS, pH 7.4

Normally 5% - 8% trehalose, mannotol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:

Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:

Detailed reconstitution instructions are sent along with the products.

SDS-PAGE:

Cadherins (Calcium dependent adhesion molecules) are a class of transmembrane proteins. Cadherin-5, also known as VE-cadherin, CDH5 and CD144, an endothelial specific cell-cell adhesion molecule, plays a pivotal role in the formation, maturation and remodeling of the vascular wall. VE-Cadherin is widely considered to be specific for vascular endothelia in which it is either the sole or the predominant cadherin, often co-existing with N-cadherin. This specificity of VE-cadherin for vascular endothelial cells is important not only in blood and lymph vessel biology and medicine, but also for cell-type-based diagnoses, notably those of metastatic tumors. As a classical cadherin, VE-Cadherin links endothelial cells together by homophilic interactions mediated by its extracellular part and associates intracellularly with the actin cytoskeleton via catenins. Mechanisms that regulate VE-cadherin-mediated adhesion are important for the control of vascular permeability and leukocyte extravasation. In addition to its adhesive functions, VE-Cadherin regulates various cellular processes such as cell proliferation and apoptosis and modulates vascular endothelial growth factor receptor functions. Consequently, VE-cadherin is essential during embryonic angiogenesis.

References