Canine Ephrin-B2 / EFNB2 Protein (His Tag)

Catalog Number: 70073-D08H

General Information
Gene Name Synonym:
EFNB2

Protein Construction:
A DNA sequence encoding the canine EFNB2 (NP_001107768.1) (Met1-Ala229) was expressed with a C-terminal polyhistidine tag.

Source: Canine
Expression Host: HEK293 Cells

QC Testing
Purity: > 95 % as determined by SDS-PAGE

Bio Activity:
Measured by its binding ability in a functional ELISA. Immobilized canine EFNB2-His at 10 μg/ml (100 μl /well) can bind human EphB4-Fc(Cat:10235-H02H). The EC50 of human EphB4-Fc(Cat:10235-H02H) is 9-20 ng/ml.

Endotoxin:
< 1.0 EU per μg of the protein as determined by the LAL method

Stability:
Samples are stable for up to twelve months from date of receipt at -70 °C.

Predicted N terminal: Ile 28

Molecular Mass:
The recombinant canine EFNB2 comprises 213 amino acids and has a predicted molecular mass of 23.6 kDa. The apparent molecular mass of the protein is approximately 33-38 kDa in SDS-PAGE under reducing conditions due to glycosylation.

Formulation:
Lyophilized from sterile PBS, pH 7.4.

Usage Guide

Storage:
Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:
Detailed reconstitution instructions are sent along with the products.

Protein Description
EphrinB2 also known as EFNB2 is a member of the ephrin family. EphrinB2 is involved in establishing arterial versus venous identity and perhaps in anastamosing arterial and venous vessels at their junctions. The transmembrane-associated ephrin ligands and their Eph family of receptor tyrosine kinases are expressed by cells of the SVZ. Eph/ephrin interactions are implicated in axon guidance, neural crest cell migration, establishment of segmental boundaries, and formation of angiogenic capillary plexi. Eph receptors and ephrins are divided into two subclasses, A and B, based on binding specificities. Ephrin subclasses are further distinguished by their mode of attachment to the plasma membrane: ephrin-A ligands bind EphA receptors and are anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) linkage, whereas ephrin-B ligands bind EphB receptors and are anchored via a transmembrane domain. An exception is the EphA4 receptor, which binds both subclasses of ephrins. EphrinB2 expression progressively extends from the arterial endothelium to surrounding smooth muscle cells and to pericytes, suggesting that ephrin-B2 may play an important role during formation of the arterial muscle wall.

References

Manufactured By Sino Biological Inc., FOR RESEARCH USE ONLY. NOT FOR USE IN HUMANS.

For US Customer: Fax: 267-657-0217 Tel: 215-583-7898
Global Customer: Fax: +86-10-5862-8288 Tel:+86-400-890-9989 http://www.sinobiological.com