General Information

Gene Name Synonym:
Beta-NGF; HSAN5; NGFB; Ngfb

Protein Construction:
A DNA sequence encoding the mature form of mouse NGF (NP_001106168.1) (Ser 122-Gly 241) was expressed, with an initial Met at the C-terminus.

Source: Mouse
Expression Host: CHO Stable Cells

QC Testing
Purity: > 96 % as determined by SDS-PAGE

Bio Activity:
Measured in a cell proliferation assay using TF-1 human erythroleukemic cells. The ED₅₀ for this effect is 0.2-2ng/mL.

Endotoxin:
< 1.0 EU per µg of the protein as determined by the LAL method

Stability:
Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Met

Molecular Mass:
The recombinant mouse NGF consists of 121 amino acids and has a calculated molecular mass of 13.5 kDa as estimated in SDS-PAGE under reducing conditions.

Formulation:
Lyophilized from sterile 20mM NaAc, 150mM NaCl, pH 5.5
Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:
Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.
Avoid repeated freeze-thaw cycles.

Reconstitution:
Detailed reconstitution instructions are sent along with the products.

Protein Description

Nerve growth factor (NGF) is important for the development and maintenance of the sympathetic and sensory nervous systems. NGF protein was identified as a large complex consisting of three non-covalently linked subunits, α, β, and γ, among which, the β subunit, called β-NGF (beta-NGF), was demonstrated to exhibit the growth stimulating activity of NGF protein. NGFB/beta-NGF gene is a member of the NGF-beta family and encodes a secreted protein which homodimerizes and is incorporated into a larger complex. NGF protein acts via at least two receptors on the surface of cells (TrkA and p75 receptors) to regulate neuronal survival, promote neurite outgrowth, and up-regulate certain neuronal functions such as mediation of pain and inflammation. In addition, previous studies indicated that NGF may also have an important role in the regulation of the immune system.

References