Mouse PCSK9 / NARC1 Protein (Fc Tag)

Catalog Number: 50251-M05H

General Information

Gene Name Synonym:
AI415265; AI747682; FH3; HCHOLA3; Narc1; PC9

Protein Construction:
A DNA sequence encoding the mouse PCSK9 (NP_705793.1) (Met1-Gln694) was expressed with the Fc region of mouse IgG1 at the C-terminus.

Source: Mouse
Expression Host: HEK293

QC Testing

Purity: > 95% as determined by SDS-PAGE.
Endotoxin: < 1.0 EU per μg protein as determined by the LAL method.

Stability:
Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Gln 35

Molecular Mass:
The recombinant mouse PCSK9 consists of 894 amino acids and predicts a molecular mass of 97.6 kDa.

Formulation:
Lyophilized from sterile PBS, pH 7.4.

Normally 5% - 8% trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:
Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:
Detailed reconstitution instructions are sent along with the products.

SDS-PAGE:

Protein Description

Proprotein convertase subtilisin/kexin type 9 (PCSK9), also known as NARC1 (neural apoptosis regulated convertase), which is a newly identified human secretory subtilase belonging to the proteinase K subfamily of the secretory subtilase family. PCSK9 protein is an enzyme which in humans is encoded by the PCSK9 gene with orthologs found across many species. It is expressed in neuroepithelioma, colon carcinoma, hepatic and pancreatic cell lines, and in Schwann cells. PCSK9 protein is highly expressed in the liver and regulates low density lipoprotein receptor (LDLR) protein levels. Inhibition of PCSK9 protein function is currently being explored as a means of lowering cholesterol levels. Thereby, PCSK9 protein is regarded as a new strategy to treat hypercholesterolemia. PCSK9 protein contributes to cholesterol homeostasis and may have a role in the differentiation of cortical neurons. References

References