Influenza A H1N1 (A/USSR/90/1977)
Neuraminidase / NA (Active)

Catalog Number: 40197-VNAHC

General Information

Gene Name Synonym:
Neuraminidase, NA

Protein Construction:
A DNA sequence encoding Influenza virus A (A/USSR/90/1977)(H1N1)
Neuraminidase (P03469.2) (Met1-Lys470), termed as NA, was expressed.

Source: H1N1

Expression Host: HEK293 Cells

QC Testing

Bio-Activity:
Measured by its ability to cleave a fluorogenic substrate, 2’-(4-
Methylumbelliferyl)-α-D-N-acetylneuraminic acid. The specific activity is >
150 U. The specific activity is > 1500 U.

Endotoxin:
< 1.0 EU per µg of the protein as determined by the LAL method

Stability:
Samples are stable for up to twelve months from date of receipt at -70 ºC

Molecular Mass:
The recombinant Influenza virus A (A/USSR/90/1977)(H1N1)
Neuraminidase consists of 470 amino acids and predicts a molecular mass
of 51.9 kDa.

Formulation:
Lyophilized from sterile PBS, 1% Triton X-100 PH 7.4

Normally 5 % - 8 % trehalose and mannitol are added as protectants
before lyophilization. Specific concentrations are included in the hardcopy
of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:
Store it under sterile conditions at -20 ºC to -80 ºC upon receiving.
Recommend to aliquot the protein into smaller quantities for optimal
storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:
It is recommended that 1 ml sterile water be added to the vial to prepare a
stock solution.

Protein Description

Neuraminidase (NA) is a major membrane glycoproteins found on the
surface of influenza virus. NA specifically catalyzes the hydrolysis removal
of terminal sialic acid residues from viral and cellular glycoconjugates. It is
known that HA binds to the sialic acid-containing receptors on the surface
of host cells during initial infection, and at the end of an infectious cycle,
NA cleaves the HA-sialic acid bondage from the newly formed virions and
the host cell receptors during budding. NA thus is described as a receptor-
destroying enzyme which facilitates virus release and efficient spread of
the progeny virus from cell to cell. NA is a single-pass type I I membrane
protein which exists as a homotetramer, and the transmembrane domain is
involved in lipid raft association during intracellular transport. NA is
suggested to play a role in the determination of host range restriction on
replication and virulence. Nine subtypes of NA have been identified, and
subtypes N1 and N2 have been positively linked to epidemics in man.
Influenza A H1N1 virus is a subtype of Influenza A virus. Some strains of
H1N1 are endemic in humans and cause a small fraction of all influenza-
like illness and a small fraction of all seasonal influenza. H1N1 strains
cause a few percent of all human flu infections in 2004-2005. Other
strains of H1N1 are endemic in pigs (swine influenza) and in birds (avian
influenza). H1N1 was the most common cause of human influenza (flu) in
2009. In June 2009, the World Health Organization declared the new strain
of swine-origin H1N1 as a pandemic. This strain is often called swine flu by
the public media. This novel virus spread worldwide and had caused about
17,000 deaths by the start of 2010.

References