Influenza A H1N1 (A/WSN/33) Hemagglutinin / HA1 Antibody, Rabbit PAb, Antigen Affinity Purified

Catalog Number: 11692-T54

GENERAL INFORMATION

<table>
<thead>
<tr>
<th>Immunogen:</th>
<th>Recombinant Influenza A H1N1 (A/WSN/33) Hemagglutinin / HA1 Protein (Catalog#11692-V08H1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation</td>
<td>Produced in rabbits immunized with purified, recombinant Influenza A H1N1 (A/WSN/33) Hemagglutinin / HA1 (Catalog#11692-V08H1; ACF54598.1; Met1-Arg343). Influenza A H1N1 (A/WSN/33) Hemagglutinin / HA1 specific IgG was purified by Influenza A H1N1 (A/WSN/33) Hemagglutinin / HA1 affinity chromatography.</td>
</tr>
<tr>
<td>Ig Type:</td>
<td>Rabbit IgG</td>
</tr>
<tr>
<td>Specificity:</td>
<td>Influenza A H1N1 (A/WSN/33) Hemagglutinin / HA1</td>
</tr>
<tr>
<td>Formulation:</td>
<td>0.2 μm filtered solution in PBS</td>
</tr>
<tr>
<td>Storage:</td>
<td>This antibody can be stored at 2℃-8℃ for one month without detectable loss of activity. Antibody products are stable for twelve months from date of receipt when stored at -20℃ to -80℃. Preservative-Free. Avoid repeated freeze-thaw cycles.</td>
</tr>
<tr>
<td>Alternative Names:</td>
<td>Hemagglutinin, HA1</td>
</tr>
</tbody>
</table>

APPLICATIONS

Applications: WB, ELISA, ICC/IF, IP

RECOMMENDED CONCENTRATION

Western Blot
WB: 1:1000-1:5000

ELISA
ELISA: 1:5000-1:10000
This antibody can be used at 1:5000-1:10000 with the appropriate secondary reagents to detect Influenza A H1N1 (A/WSN/33) Hemagglutinin / HA1.

Please Note: Optimal concentrations/dilutions should be determined by the end user.
Anti-Influenza A H1N1 (A/WSN/33) Hemagglutinin polyclonal antibody at 1:1000 dilution.
Sample: Influenza A H1N1 (A/WSN/33) Hemagglutinin Recombinant Protein
Lane A: 50ng
Lane B: 10ng

Secondary
Goat Anti- Rabbit IgG H&L (Dylight 800) at 1/10000 dilution.

Developed using the Odyssey technique.
Performed under reducing conditions.