Human Ephrin-B1 / EFNB1 Protein (His & Fc Tag)

Catalog Number: 10894-H03H

General Information

Gene Name Synonym:
CFND; CFNS; EFB1; EFL3; Elk-L; EPLG2; LERK2

Protein Construction:
A DNA sequence encoding the human EFNB1 (NP_004420.1) extracellular domain (Met 1-Lys 237) was was fused with the C-terminal polyhistidine-tagged Fc region of human IgG1 at the C-terminus.

Source: Human

Expression Host: HEK293 Cells

QC Testing

Purity: > (79.7+18.0) % as determined by SDS-PAGE

Bio Activity:
Measured by its binding ability in a functional ELISA. Immobilized mouse EphB3 at 2 μg/ml (100 μl/well) can bind human EFNB1 Fc chimera with a linear range of 1.56-25 ng/ml.

Endotoxin:
< 1.0 EU per μg of the protein as determined by the LAL method

Stability:
Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Leu 28

Molecular Mass:
The recombinant human EFNB1/Fc chimera is a disulfide-linked homodimeric protein. The reduced monomer consists of 458 amino acids and predicts a molecular mass of 51.2 KDa. In SDS-PAGE under reducing conditions, the apparent molecular mass of the protein is approximately 64 and 38 KDa due to glycosylation.

Formulation:
Lyophilized from sterile PBS, pH 7.4

Normally 5% - 8% trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:
Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:
Detailed reconstitution instructions are sent along with the products.

SDS-PAGE:

Protein Description

Ephrin-B1 also known as EFNB1, is a member of the ephrin family. The transmembrane-associated ephrin ligands and their Eph family of receptor tyrosine kinases are expressed by cells of the SVZ. Eph/ephrin interactions are implicated in axon guidance, neural crest cell migration, establishment of segmental boundaries, and formation of angiogenic capillary plexi. Eph receptors and ephrins are divided into two subclasses, A and B, based on binding specificities. Ephrin subclasses are further distinguished by their mode of attachment to the plasma membrane: ephrin-A ligands bind EphA receptors and are anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) linkage, whereas ephrin-B ligands bind EphB receptors and are anchored via a transmembrane domain. An exception is the EphA4 receptor, which binds both subclasses of ephrins. EphrinB1 and B class Eph receptors provide positional cues required for the normal morphogenesis of skeletal elements. Another malformation, preaxial polydactyly, was exclusively seen in heterozygous females in which expression of the X-linked ephrinB1 gene was mosaic, so that ectopic EphB-ephrinB1 interactions led to restricted cell movements and the bifurcation of digital rays.

References

Manufactured By Sino Biological Inc., FOR RESEARCH USE ONLY. NOT FOR USE IN HUMANS.

For US Customer: Fax: 267-657-0217 Tel: 215-583-7898

Global Customer: Fax: +86-10-5862-8288 Tel:+86-400-890-9989 http://www.sinobiological.com