Human Interferon beta / IFN-beta / IFNB Protein

Catalog Number: 10704-HNAS

General Information

Gene Name Synonym:
IFB; IFF; IFN-beta; IFNB; Interferon beta

Protein Construction:
A DNA sequence encoding the human IFNβ (P01574) (Met1-Asn187) was expressed.

Source: Human
Expression Host: CHO Stable Cells

QC Testing

Purity: > 95 % as determined by SDS-PAGE

Bio Activity:
Measured in antiviral assays using WISH cells infected with vesicular stomatitis virus. The ED50 for this effect is typically 2-20 pg/mL.

Endotoxin:
< 1.0 EU per µg of the protein as determined by the LAL method

Stability:
Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Met 22

Molecular Mass:
The recombinant human IFNβ consists of 166 amino acids and predicts a molecular mass of 20 kDa. It migrates as an approximately 20-23 KDa band in SDS-PAGE under reducing conditions.

Formulation:
Lyophilized from sterile 10mM NaAC, 40mM Arg, 0.12mg/ml Met, 146mg/ml Sucrose, 0.1% PF-68; pH 4.5

Normally 5 % - 8 % trehalose, mannotol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:
Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:
Detailed reconstitution instructions are sent along with the products.

SDS-PAGE:

Protein Description

Interferons (IFNs) are natural glycoproteins belonging to the cytokine superfamily, and are produced by the cells of the immune system of most vertebrates in response to challenges by foreign agents such as viruses, parasites and tumor cells. Interferon-beta (IFN beta) is an extra-cellular protein mediator of host defense and homeostasis. IFN beta has well-established direct antiviral, antiproliferative and immunomodulatory properties. Recombinant IFN beta is approved for the treatment of relapsing-remitting multiple sclerosis. The recombinant IFN beta protein has the theoretical potential to either treat or cause autoimmune neuromuscular disorders by altering the complicated and delicate balances within the immune system networks. It is the most widely prescribed disease-modifying therapy for multiple sclerosis (MS). Large-scale clinical trials have established the clinical efficacy of IFN beta in reducing relapses and slowing disease progression in relapsing-remitting MS. IFN beta therapy was shown to be comparably beneficial for opticospinal MS (OSMS) and conventional MS in Japanese. IFN beta is effective in reducing relapses in secondary progressive MS and may have a modest effect in slowing disability progression. In addition to the common antiviral activity, IFN beta also induces increased production of the p53 gene product which promotes apoptosis, and thus has therapeutic effect against certain cancers. The role of IFN-beta in bone metabolism could warrant its systematic evaluation as a potential adjunct to therapeutic regimens of osteolytic diseases. Furthermore, IFN beta might play a beneficial role in the development of a chronic progressive CNS inflammation.

References