Human TIM-3 / HAVCR2 Protein (His Tag)

Catalog Number: 10390-H08H

General Information

Gene Name Synonym:
CD366; HAVcr-2; HAVCR2; KIM-3; Tim-3; TIM3; TIMD-3; TIMD3

Protein Construction:
A DNA sequence encoding the human TIMD3 (NP_116171.3) extracellular domain (Met 1-Arg 200) was expressed, fused with a polyhistidine tag at the C-terminus.

Source: Human

Expression Host: Human Cells

QC Testing

Purity: > 96 % as determined by SDS-PAGE

Endotoxin:
< 1.0 EU per µg of the protein as determined by the LAL method

Stability:
Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Ser 22

Molecular Mass:
The recombinant human TIMD3 consists of 190 amino acids after removal of the signal peptide and has a predicted molecular mass of 21.4 kDa. In SDS-PAGE under reducing conditions, the apparent molecular mass of rhTIMD is approximately 40-45 kDa due to glycosylation.

Formulation:
Lyophilized from sterile PBS, pH 7.4

Usage Guide

Storage:
Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:
Detailed reconstitution instructions are sent along with the products.

Hepatitis A virus cellular receptor 2 (HAVCR2), formerly known as T cell immunoglobulin and mucin domain-3 (TIM-3), is a transmembrane glycoprotein expressed on the surface of terminally differentiated Th1 cells but not on Th2 cells. It was the first surface molecule that specifically identifies Th1 cells in both mice and human. Recently, identification of Galectin-9 as a ligand for TIM-3 has established the TIM-3-Galectin-9 pathway as an important regulator of Th1 immunity and tolerance induction. Engagement of TIM-3 by its ligand galectin-9 negatively regulates IFN-gamma secretion and influences the ability to induce T cell tolerance in both mice and man. It suggests a novel paradigm in which dysregulation of the TIM-3-galectin-9 pathway could underlie chronic autoimmune disease states, such as multiple sclerosis. Recent work has explored the role of TIM-3 in systemic lupus erythematosus (SLE), and their results indicate that TIM-3 may represent a novel target for the treatment of SLE. Numerous studies have demonstrated that Tim-3 influences autoimmune diseases, including diabetes and multiple sclerosis, and its role in other inflammatory diseases including allergies and cancer is beginning to become clear. In tumor rejection model, soluble form of Tim-3 (sTim-3) significantly impaired T cell antitumor immunity, evidenced by decreased antitumor CTL activity and reduced amount of tumor-infiltrating lymphocytes in tumor. sTim-3 as an immunoregulatory molecule that may be involved in the negative regulation of T cell-mediated immune response.

References