Human HER3 / ErbB3 Protein

Catalog Number: 10201-HCCH

General Information

Gene Name Synonym:
c-erbB-3; c-erbB3; EBB3; ErbB-3; erbB3-S; HER3; LCCS2; MDA-BF-1; p180-ErbB3; p45-sErbB3; p85-sErbB3

Protein Construction:
A DNA sequence encoding the human ERBB3 (NP_001973.2) (Met1-Thr643) was expressed with five amino acids (DDDK) at the C-terminus.

Source: Human

Expression Host: HEK293 Cells

QC Testing

Purity: > (58.6+31.1) % as determined by SDS-PAGE.

Endotoxin:
< 1.0 EU per μg protein as determined by the LAL method.

Stability:
Samples are stable for up to twelve months from date of receipt at -70 °C

Predicted N terminal: Ser 20

Molecular Mass:
The recombinant human ERBB3 consists 630 amino acids and predicts a molecular mass of 69.3 kDa.

Formulation:
Lyophilized from sterile PBS, pH 7.4.

Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as protectants before lyophilization. Specific concentrations are included in the hardcopy of COA. Please contact us for any concerns or special requirements.

Usage Guide

Storage:
Store it under sterile conditions at -20°C to -80°C upon receiving. Recommend to aliquot the protein into smaller quantities for optimal storage.

Avoid repeated freeze-thaw cycles.

Reconstitution:
Detailed reconstitution instructions are sent along with the products.

Protein Description

ErbB3, also known as Her3 (human epidermal growth factor receptor 3), is a member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. This membrane-bound glycoprotein has a neuregulin binding domain but has not an active kinase domain, and therefore cannot mediate the intracellular signal transduction through protein phosphorylation. However, its heterodimer with ErbB2 or other EGFR members responsible for tyrosine phosphorylation forms a receptor complex with high affinity, and initiates the related pathway which lead to cell proliferation or differentiation. ErbB3 has been shown to be implicated in numerous cancers, including prostate, bladder, and breast tumors. This protein has different isoforms derived from alternative splicing variants, and among which, the secreted isoform lacking the intermembrane region modulates the activity of membrane-bound form.

References